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LETTER TO THE EDITOR 

Critical behaviour of the S = 1/2 isotropic Heisenberg 
ferromagnetic film with a diluted upper layer: a Monte Carlo 
study 

I V Rojdestvenskyt, M G Cottami and I A Favorski$§ 
t Department of Physics, University of Westem Ontario, London, Ontario, Canada N6A 3K7 
$ Faculty of Physics, Leningrad State University, Russia 

Received 17 November 1993 

Abstract. We investigate the critical properties of an S = 4 isotropic Heisenberg ferromagnetic 
film with a simple cubic structure, consisting of two monatomic layers with the upper layer 
being incomplete due to dilution. We demonstrate the effective two-dimensional character of 
the critical behaviour of the longitudinal susceptibility for this system and study Ihe dependence 
of an effective in-plane exchange constant on the concenlration of the spins in the upper layer. 
Within appropriate limits, we compare our results with the two-dimensional percolation theory. 

In some recent publications 11.21 we studied numerically the critical properties of ultrathin 
monocrystalline thin films described by an S = 4 isotropic Heisenberg ferromagnetic 
Hamiltonian on a simple cubic lattice and with the number of monolayers L < 3. We found 
that, for the investigated range of temperatures, the critical behaviour of the longitudinal 
susceptibility x and the correlation range E was effectively two-dimensional (2D) [l-31, i.e. 
for T / J  >> 1 they satisfy 

with q x  5 L .  We note that the analysis of our results cannot give us a proof that 
the behaviour of the system remains 2D to T = 0. This is because in our Monte Carlo 
calculations we use large but finite lattices and long but finite Markov chains. However, for 
the investigated temperature interval, the transverse (or interlayer) correlations were shown 
to be close to saturation [l, 21, not giving rise so far to any kind of finite-temperature phase 
transition, which is consistent with the two- and three-monolayer films being effectively 2D 
to T = 0. We suggested [2] that the anomalous value for the exchange constant deduced in 
[4] for the 2.5 monolayer thin 'He film was due to in-plane exchange renormalization effects. 
There remains a possibility, however, that the third (incomplete) layer in the experiment of 
[4] could contribute to this renormalization. 

Accordingly, the aim of the present paper is to study the effects of an incomplete 
layer. For simplicity, we consider a Heisenberg film consisting of two monatomic layers, 
of which one is complete, i.e. all the sites are occupied by spins, and the second is diluted 
or incomplete, having random distribution of vacant sites with a given concentration. We 
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show that the critical behaviour of the susceptibility for such a system is effectively 2D 
within the explored range of temperatures with the index qx varying from 2 to 1 with the 
concentration. We discuss the concentration dependences of qx  in relation to the percolation 
theory. 

As in our previous paper [ I ,  21, the Handscomb Monte Carlo procedure had been utilized. 
We consider the thin film as a crystal having two equal surfaces in one direction and infinite 
in the others. The Hamiltonian of an S = 4 Heisenberg ferromagnet with nearest-neighbour 
interactions and the described geometry can be written generally as 

(ij) (P4)  1 

where the first and second sums are for the intra-layer interactions of the spins within the 
first and second layers, respectively, and the third sum is for the interlayer interactions of 
the spins. The superscripts 1 and 2 refer to the layer number whilst the subscripts label the 
positions of the sites in the film plane. Also, we assume the in-plane periodic boundary 
conditions [ I ]  to be in effect. 

To introduce incompleteness into the second layer, we assume the folIowing structure 
of the exchange interaction matrices Ji). Ji4 and JT:  (i) J i )  J for all the pairs of nearest 
neighbours, i and j ;  (ii) to construct the matrices J;q and J: we at first introduce the 
fractional concentration x of the occupied sites, where 0 c x c 1 and x = 1 represents the 
complete second layer. Then, using this concentration as the probability for the single site 
to be occupied, we construct the vacancy distribution within the second layer. After that, 
we put Jiq = 0 if either of the sites p and q are vacant, otherwise we put J,$ = J if both 
are occupied, Similarly, we put J: = 0 if in the second layer the site I is vacant, otherwise 
JT = J .  We note that in our simple model we do not account for the possibility of the 
interlayer exchange being different from the in-plane exchange. 

For our calculations we chose the same temperature interval as before [1,2], i.e. 0.7 
c T / J  < 1.3. Since we had already made a simple finitescaling analysis for this interval 
for the one- and two-monolayer films [1,2], we can assume that a square with the linear 
size equal to 70 sites represents the infinite system fairly well. We note, however, that the 
finite-size effects are expected to be more important for diluted systems than for systems 
without structural disorder [5]. However, in our case, having made several test calculations, 
we did not observe these effects to be significant in the chosen temperature interval. All 
the other details of the computer simulation, including the lengths of the Monte Carlo runs, 
are similar to before [ 1 , 2 ] .  

The analysis of the numerical results for the temperature dependences of the longitudinal 
susceptibility included making fits to an expression of the form (1) and defining the exchange 
renormalization index q x .  We should note here that, according to the expression (I) ,  the 
exact value of the exponential power is 2 z q X J / T  rr 6 . 2 8 q x J / T .  However, both we 
[ 1,2]  and others [ 3 ]  obtained this power for the one-monolayer system as - 6qx J /  T. The 
difference might be due either to systematic numerical error or to an inaccuracy in the 
derivation of (1). Therefore, for calculation of q x .  we used our value of 6 instead of 6.28 
from (I). 

In figure 1 we present the results of this fitting procedure for several values of the 
concentration x .  Analysing the presented data, we may conclude that the investigated 
system displays effectively 2D behaviour with the values of qx lying in between those for 
the two-monolayer and one-monolayer systems. When x is small, the value of qx  appears 
to depend strongly on x ,  dropping rapidly from qx  rr 1.5 for x = 0.8 to qx rr 1.2 for x = 
0.6. 
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Flgure 1. The temperature behaviour of the susceptibility for the him with two layen. one of 
them diluted with an occupancy concentration x. Broken curves: fits to the function A J l T  - B. 
Key: U x = 0.8, A = 8.6, B = 5.1; 0: x = 0.6, A = 7.0, B = 4.2; e: x = 0.4. A = 6.3. B = 
3.9; V: x = 0.2, A = 6.0, B = 3.9, ?: x = 0.02. A = 6.0, B = 3.8. 

For better analysis of these dependences, we plotted the values of qx  versus 
concentration x in figure 2. This shows that for x > 0.7, qx  decreases with the decreasing 
of x in such a way that the tangent line to this dependence is pointing to the limit of purely 
2D behaviour ( q x  = I), close to the 2D percolation limit x = 0.6 (see, e.g. [5]). However, 
when x becomes less than 0.7, substantial deviations from this tangent line occur, making 
the crossover interval from two-layer to one-layer behaviour as wide as 0.3 < x < 0.7. 
Finally, for x c 0.3 the curve flattens to an almost horizontal line. 

The simple arguments for the interpretation of these results can be provided by the 
percolation theory. The magnetic long-range order in the incomplete layer, being taken 
separately, depends on the existence of exchange paths connecting the spins in the plane. 
If the number of the bonds is insufficient to form the mentioned paths, then the long-range 
order vanishes. However, in the presence of the second (complete) layer, the spins in the 
upper layer can be connected by the paths that avoid the broken bonds in the upper layer 
and partially go through the lower layer. 

When the occupancy concentration x is sufficiently high, the main ordering in the upper 
layer occurs due to the paths lying within this layer. This situation can be adequately 
described by the ZD percolation theory, that results in the tangent line pointing straight 
to the percolation limit. However, in the vicinity of the percolation threshold, the paths 
involving both of the layers play a significant role, thus flattening the curve in the range of 
intermediate values of x .  Finally, for small values of x ,  the total number of spins in the 
upper layer becomes so small that they do not contribute significantly to the susceptibility 
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Figure 2. Exchange renormalimion index n, versus the o c c u p c y  concentntlon x .  

of the whole system. Moreover, the paths connecting the remaining spins in the upper layer 
then lie mostly in the lower layer, contributing to the lower layer susceptibility. 

The results depicted in figure 2 might be useful in the context of a rough interpretation 
of the data from [4], where the system in question had 2.5 layers of 3He. This means 
that the occupancy concentration of the upper layer then is 0.5. As this is lower than the 
percolation limit, we can conclude that the upper layer should not contribute much to the 
susceptibility of the system. However, as lhe total number of layers in this system is 3, 
the curve analogous to figure 2 might be flatter than OUTS, as the bonds through the lower 
layers can be of more importance, thus increasing the upper layer contribution to the total 
susceptibility. 

The authors gratefully thank Professor U M S Costa of the Universidade Federal de Alagoas, 
Brazil, for a very useful discussion of the obtained results. 
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